Identification of Crack Location and Depth in Rotating Machinery Based on Artificial Neural Network

نویسندگان

  • Tao Yu
  • Qingkai Han
  • Zhao-Ye Qin
  • Bangchun Wen
چکیده

With the characteristics of ANN’s strong capability on nonlinear approximation, a new method by combining an artificial neural network with back-propagation learning algorithm and modal analysis via finite element model of cracked rotor system is proposed for fast identification of crack fault with high accuracy in rotating machinery. First, based on fracture mechanics and the energy principle of Paris, the training data are generated by a set of FEmodel-based equations in different crack cases. Then the validation of the method is verified by several selected crack cases. The results show that the trained ANN models have good performance to identify the crack location and depth with higher accuracy and efficiency, further, can be used in fast identification of crack fault in rotating machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam

Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...

متن کامل

ANN-Based Crack Identification in Rotor System with Multi-Crack in Shaft

Rotating machinery, such as steam turbo, compressor, and aeroengine etc., are widely used in many industrial fields. Among the important rotor faults, the fatigue crack fault, which can lead to catastrophic failure and cause injuries and severe damage to machinery if undetected in its early stages, is most difficult to detect efficiently with traditional methods. In the paper, based on the trut...

متن کامل

Crack Detection of Timoshenko Beams Using Vibration Behavior and Neural Network

Abstract: In this research, at first, the natural frequencies of a cracked beam are obtained analytically, then, location and depth of a crack in beam is identified by neural network method. The research is applied on a beam with an open crack for three different boundary conditions. For this purpose, at first, the natural frequencies of the cracked beam are obtained analytically, to get the ex...

متن کامل

Identification of Crack Location and Depth in a Structure by GMDH- type Neural Networks and ANFIS

The Existence of crack in a structure leads to local flexibility and changes  the stiffness and dynamic behavior of the structure. The dynamic behavior of the cracked structure depends on the depth and the location of the crack. Hence, the changes in the dynamic behavior in the structure due to the crack can be used for identifying the location and depth of the crack. In this study the first th...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006